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Abstract

This paper reviews data acquisition and signal processing issues relative to producing an amplitude estimate of surface EMG. The
paper covers two principle areas. First, methods for reducing noise, artefact and interference in recorded EMG are described.
Wherever possible noise should be reduced at the source via appropriate skin preparation, and the use of well designed active
electrodes and signal recording instrumentation. Despite these efforts, some noise will always accompany the desired signal, thus
signal processing techniques for noise reduction (e.g. band-pass filtering, adaptive noise cancellation filters and filters based on the
wavelet transform) are discussed. Second, methods for estimating the amplitude of the EMG are reviewed. Most advanced, high-
fidelity methods consist of six sequential stages: noise rejection/filtering, whitening, multiple-channel combination, amplitude
demodulation, smoothing and relinearization. Theoretical and experimental research related to each of the above topics is reviewed
and the current recommended practices are described. 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Artefact rejection; Electromyography; EMG; EMG amplitude; Measurement noise; Noise; Surface EMG

1. Introduction

Electrical activity within a muscle arises due to transient
ionic potentials in activated motor units, where the motor
unit is the smallest functional grouping in muscle and is
comprised of a single motor neuron and several associated
muscle fibers. The EMG, which can be measured from
within the muscle or from the skin surface overlying the
muscle, is a spatial and temporal interference pattern of

� This paper by Clancy et al is the second paper published from a
consensus conference held in Northern California in 1998 [Marconi
Research Conference 1998—Estimating Muscle Load Using Surface
EMG Amplitude, David Rempel, ed, Ergonomics Program, University
of California, Richmond, CA]. The conference attendees addressed the
question, “Under what circumstances can surface electromyography
be used to estimate upper extremity and neck muscle load during the
performance of precision tasks?” The purpose of the papers was to
provide guidelines to the ergonomics community in the application of
surface electromyography to evaluate tools and tasks.
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the electrical activity of the activated motor units located
near the detection surfaces. Because of the nature of motor
unit activation in muscle, the measured signal resembles
a zero–mean random (stochastic) process whose standard
deviation is proportional to the number of active motor
units and the rate at which motor units are activated.
(Additional details regarding motor unit activation can be
found in [4].) This signal has been used to provide insight
into musculoskeletal system function via estimation of
muscle fiber conduction velocity, monitoring localized
changes in the EMG during muscle fatigue, and analysis
of muscle activation times and intervals, e.g. during the
analysis of gait or motion trajectory studies. EMG has also
been successfully employed as a control signal for pow-
ered upper limb prostheses [42,62]. For many applications,
the amplitude of the EMG, estimated from bipolar rec-
ordings taken at the surface of the skin, has been used
to monitor muscular activation level and duration, and to
estimate the forces produced by the muscles.EMG ampli-
tude may be defined as the time-varying standard deviation
of the EMG.
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A general paradigm for EMG amplitude analysis can
be logically segmented into three sequential stages: 1)
electrode selection and placement; 2) processing of the
acquired EMG to estimate EMG amplitude; and 3)
interpretation and further modeling derived from the
estimated EMG amplitude and, usually, other observed
information. The study of changes in the frequency con-
tent of EMG is common for forceful (typically 50% or
more of maximal force), short-duration tasks (e.g. for
task durations ranging from 20–30 s to 2–4 min), how-
ever, its benefits have yet to be definitively shown for
longer duration, precision and generally lower force
tasks. Thus, this topic will not be discussed in this
review. The purpose of this review is to describe the
history and current state-of-the-art for stage two noted
above. A discussion of the electrode characteristics and
electrode site selection will be avoided, except where
directly relevant to the EMG processing problem. In
addition, interpretation and further modeling (e.g. EMG-
force models) of the processed EMG signal will not
be covered.

With the above limitations in mind, this paper covers
two topics. The first concerns the sources of EMG
measurement noise and techniques for diminishing its
influence. For the analysis of low effort levels associated
with many precision tasks, noise in the recorded EMG
can have a significant influence on signal interpretation.
A discussion of noise sources in EMG measurement and
how to minimize the impact of these sources is
presented. The second topic covers techniques for esti-
mating the amplitude of the noise-reduced surface EMG.
Most advanced, high-fidelity methods consist of the
sequential steps of signal whitening, multiple-channel
combination, amplitude demodulation, smoothing and
relinearization. Each of these steps is described and a
review of related research is presented. For more general
issues concerning EMG detection, processing and appli-
cations, the reader is referred to [35].

2. Noise in the EMG and strategies for
elimination/reduction

2.1. Electrode noise

The EMG can be detected using surface electrodes,
which are affixed to the skin overlying the muscle of
interest, or using indwelling electrodes (wire or needle),
which are inserted into the muscle tissue. In either case,
the basis by which the electrodes function is the forma-
tion of a layer of charge at the interface between the
metal electrode and an electrolyte solution. The presence
of a charge gradient at the electrode–electrolyte interface
produces a voltage, or potential, called the half-cell
potential. This potential is dependent on the electrode
material and a considerable DC voltage difference (e.g.

more than 1 V) can exist between electrodes of different
metals and, to a much lesser extent, electrodes made of
the same metal (see [31:317], for a table of half-cell
potentials for various conditions). In EMG measurement,
all recording electrodes should be made of the same
material to minimize half-cell potential differences.

Aronson and Geddes [2] measured large fluctuations
in the electrode potential when the charge layer was
destabilized by the addition of a small amount of metal
contaminant to two identical, electrolytically clean metal
electrodes. Godin et al. [32], however, found that noise
due to fluctuations of the charge layer was negligible
over a frequency range of 8 to 1000 Hz for pairs of
stainless steel electrodes which were well matched. It is
known that the electrode–electrolyte interface of silver
(Ag) electrodes is stabilized by coating the electrodes
with a layer of silver chloride (AgCl) [31]. Ag–AgCl
electrodes are very stable electrically and are widely
used as surface recording electrodes.

In the case of surface EMG recording, the electrode–
skin interface has a reactive impedance which has been
modeled using passive circuit elements (e.g. [30,68]; see
Geddes [31] for a review of several models). Electrode
impedance depends on electrode size, the signal fre-
quency and the current density at the electrodes. For low
current densities, Godin et al. [32] measured electrode
impedances as high as 3 M�, for a 2.5 mm diameter
stainless steel electrode at a frequency of 10 Hz. Elec-
trode impedance decreased with increasing size and sig-
nal frequency to well below 10 k�, for a 20 mm diam-
eter electrode at 1000 Hz. A high electrode–skin
impedance can lead to reduced signal amplitude, wav-
eform distortion and power line interference in the
recorded EMG. This problem can be reduced by minim-
izing the electrode–skin impedance and using a signal
amplifier with an input impedance which is at least 100
times greater than the highest expected electrode imped-
ance, i.e., an input impedance of 100 M� or greater.
Paste-coupled electrodes generally exhibit a lower elec-
trode–skin impedance than dry electrodes, because the
high impedance of the epidermal layer of the skin is
reduced with the use of a conductive gel or paste. Care-
ful skin preparation, including cleansing with alcohol or
lipid solvents (e.g. ether) and rubbing a conductive paste
or gel into the skin will reduce the electrode–skin imped-
ance to acceptable levels even with dry electrodes. The
skin impedance under dry electrodes will also decrease
with sweat production under the electrodes [68].
Indwelling electrodes generally have very small contact
regions and thus very high impedances. It is extremely
important to use a high input impedance amplifier with
these electrodes.

2.2. Electrode motion artefact

There are two sources of motion artefact in surface
electrodes: mechanical disturbance of the electrode
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charge layer and deformation of the skin under the elec-
trodes. The first type of motion artefact occurs when
there is relative movement between the electrode and the
underlying skin. This type of artefact is greatly attenu-
ated in recessed electrodes, in which the electrode–elec-
trolyte interface is separated from the skin surface by a
layer of conductive gel or paste. Any mechanical dis-
turbances caused by relative motion between the elec-
trode and the skin are damped by the intervening gel
layer, and their effect on the signal is limited. The
second type of motion artefact arises because a potential
difference, the skin potential, exists across the layers of
the skin, and the value of this potential changes when
the skin is deformed or stretched. This type of motion
artefact is not attenuated by the use of recessed elec-
trodes, but can be reduced by reducing the skin imped-
ance [72]. Tam and Webster [69] suggest reducing the
skin impedance by removing the upper layers of the skin
via abrasion and Burbank and Webster [9] found that
skin impedance is lowered by puncturing the skin. How-
ever, both techniques have drawbacks including
determining the proper level of abrasion or depth of
puncture, the time required, and the possibility of skin
irritation and infection. As mentioned above, cleansing
the skin with solvents and rubbing a conductive paste
into the skin is recommended for reducing skin imped-
ance.

Motion artefact can also be reduced in EMG rec-
ordings through signal conditioning, both on-line and
off-line. Since the power density of motion artefact is
mostly below 20 Hz, a high pass filter is often incorpor-
ated into the measurement instrumentation. To avoid loss
of myoelectric signal power, the corner frequency of the
high pass filter is frequently set at 10 Hz and generally
should be set no higher than 20 Hz. Cutoff frequencies
much higher than 20 Hz begin to approach the median
frequency of the signal (recall that real filters shape the
signal at frequency locations adjacent to the cutoff
frequency), particularly during fatigue, and thus can be
problematic. Conforto et al. [20] compared four tech-
niques for motion artefact removal from EMG: 1) fil-
tering with an eighth order Chebyshev high pass filter
with corner frequency at 20 Hz; 2) filtering with a mov-
ing average filter to estimate the motion artefact and sub-
tracting the estimated artefact from the signal record; 3)
filtering with a moving median filter to estimate the
motion artefact and subtracting the estimated artefact
from the signal record; and 4) filtering using an adaptive
filter based on orthogonal Meyer wavelets. These tech-
niques were tested on simulated bursts of EMG contami-
nated with low frequency artefacts and on real dynamic
gait EMG contaminated with motion artefact. The wave-
let filter gave superior performance in information pres-
ervation and time-detection of EMG bursts. Hamilton
and Curley [33] have investigated an adaptive method,
based on measuring the skin impedance, for removing

motion artefact in ambulatory ECG recordings. Prelimi-
nary results indicated that motion artefact was reduced
by as much as 12.5 dB using the adaptive system, but
practical implementation was impeded by the high cost
of the skin stretch sensors.

A different type of motion related artefact is generated
by the relative movement between skin surface elec-
trodes and the innervation zone(s) of the underlying
motor units. A sharp decrement (up to 60–80%) of EMG
amplitude results when an innervation zone slides under
a differential pair of electrodes. There is no simple
means to compensate for such an artefact since it is
indistinguishable from a change in muscle activation
level. In the future, linear electrode arrays will provide
a means to detect the location of the innervation zone
and avoid such artefact by placing electrode pairs away
from it [57].

2.3. Cable motion artefact

The cables which connect the recording electrodes to
the amplifier have an intrinsic capacitance. If unshielded
cables are moved through an ambient magnetic or elec-
tric field, or are subjected to a time-varying magnetic or
electric field, current is generated. The magnitude of the
voltage induced in the cable is the product of the dis-
placement current and the electrode–skin impedance plus
the voltage induced by magnetic coupling (both affected
by cable motion). This voltage can be comparable to the
magnitude of the detected EMG. The artefact typically
has a frequency range of 1 to 50 Hz.

Cable motion artefact can be reduced by reducing the
electrode–skin impedance through careful skin prep-
aration. It is also reduced by using shielded cables which
provide a low impedance path to ground, external to the
measurement system [30]. However, the shielded cables
themselves can also be a source of cable motion artefact.
When these cables are moved, friction and deformation
of the cable insulation generates static charges which
dissipate through the measurement system [49,72]. An
excellent solution to cable motion artefact is the use of
active electrodes, in which the electrode is mounted onto
an operational amplifier (op amp) which has a high input
impedance and a low output impedance and is con-
figured as a unity gain buffer. The op amp acts as an
impedance transformer, transforming a high impedance
at the electrode side of the circuit to a low impedance
at the cable side of the circuit. The displacement current
now flows through this low impedance to ground and
the cable motion artefact is greatly attenuated. As well,
because the active electrode acts as an impedance trans-
former, extensive skin preparation to lower the elec-
trode–skin impedance is not required. Several active
electrode designs have been reported (e.g.
[25,49,54,59]). Bourland et al. [8] incorporated an op
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amp into the clip of the lead which was attached to a
dry electrode producing an “active cable” .

An active bipolar electrode (a.k.a. an electrode–
amplifier) is formed by connecting two electrodes
directly to the input of a differential amplifier circuit,
with all of these components mounted into one miniature
package. A differential gain (10–2000) is applied to the
signal, which improves overall noise rejection by raising
the signal strength above the noise floor found in sub-
sequent electronics. In some cases (particularly field and
clinical studies), disposable electrodes with short leads
(a few centimeters) are connected to the miniature differ-
ential amplifier circuit. The disposable electrode option
can be more sanitary and pre-gelled electrodes exist.
However, maintaining a constant inter-electrode distance
(both during application and throughout a contraction)
is more difficult.

2.4. Alternating current power line interference

Ambient electromagnetic fields exist in the vicinity of
AC 120 V (or 230 V) power lines and electric equip-
ment. The frequency of these fields is at the frequency
of the AC power supply (60 Hz in North America and
50 Hz in Europe) and its harmonics. The presence of
such fields can result in a power line interference signal
in the recorded EMG, which can be much larger than
the EMG itself. The magnitude of the artefact can be
reduced by shielding the EMG recording apparatus or
moving it away from the interference source. However,
these changes may not always be practical and it will be
necessary to reduce the interference using other means.

The mode by which power line interference arises can
be magnetic or electric [72]. In the first case, a closed
loop is formed by the electrode leads, the subject and
the signal amplifier. When a time-varying magnetic field
passes through the loop, a current is induced in the leads.
The magnitude of the current is proportional to the time
derivative of the magnetic field and to the area enclosed
by the loop. In the second case, the electrode leads and
the subject are both capacitively coupled to the ambient
electric field, which induces displacement currents in the
leads and in the subject’s body. The current in the elec-
trode leads flows through the electrode impedance,
which is much smaller than the amplifier input imped-
ance, resulting in an interference potential at the elec-
trodes which is sensed by the amplifier. The displace-
ment current in the subject flows through the skin
impedance to ground at the ground electrode. This flow
results in a common mode voltage which appears at the
recording electrodes. With bipolar recording electrodes,
the EMG is differentially amplified and, in the ideal case,
any common mode signal would be removed by the dif-
ferential amplifier. In a practical recording situation,
however, some common mode signal is transformed into
differential signal because the skin impedances at the

two electrodes are not perfectly matched, the impedances
at the amplifier inputs are not perfectly matched and the
common mode rejection ratio is finite [74]. This transfor-
med signal will appear as power line interference.

The magnetically induced power line interference can
be reduced by keeping the electrode leads short and/or
by twisting the leads together, such that the loop area
enclosed by the electrode leads, subject and signal
amplifier is minimized. Good skin preparation, to reduce
the skin impedance and minimize the difference between
the skin impedances at the recording electrode sites, is
essential to reduce the magnitude of the artefact induced
by displacement currents in the electrode leads and in
the subject. This type of artefact can also be attenuated
by shielding the electrode leads, with the shield
grounded at the amplifier, and by using a well-designed
differential amplifier with a common mode rejection
ratio (CMRR = differential gain/common mode gain) of
at least 100 dB at 50/60 Hz. Additionally, active ground-
ing of the subject (i.e. active referencing to the power
supply common) has been proposed for use in ECG rec-
ordings (this technique is also referred to as the driven
right leg circuit) [58,74]. In this circuit, the common
mode voltage on the body is negatively fed back (i.e.
the phase is reversed) to a third electrode, through a
feedback amplifier, driving the common mode voltage
to a lower level and thereby reducing the power line
interference.

For subject safety, the differential amplifiers used in
EMG recording are generally optically or electrically
isolated. An isolated amplifier consists of two sections
with separate and isolated references (grounds), thereby
providing a high impedance (called the isolation
impedance) between the reference terminal of the input
circuit and earth ground [60]. Some of the displacement
current, induced in the subject by the ambient electric
field from the power line, flows across the isolation
impedance (capacitance) to ground, giving rise to an iso-
lation mode voltage. The ability of the isolated amplifier
to suppress this isolation mode voltage is measured as
the isolation mode rejection ratio (IMRR). Metting van
Rijn [52] suggested the addition of a pre-amplifier to an
isolated amplifier to increase the circuit IMRR. Pallas-
Areny [60] reported that there should be adequate shar-
ing between the CMRR and IMRR for artefact sup-
pression. Some of the isolation mode voltage will be
converted to a differential voltage by differences in the
electrode skin impedances. Thus good skin preparation
is also necessary to reduce power line artefact from
this source.

Even with good skin preparation at the recording elec-
trode sites and using well designed instrumentation, it
may not be possible to adequately attenuate power line
interference in the EMG before signal acquisition, and
off-line processing will be necessary to remove the
recorded artefact. One possibility is to process the EMG
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through a narrow fixed notch filter centered at the funda-
mental frequency (50 or 60 Hz). This approach may be
an acceptable compromise if only a rough EMG ampli-
tude estimate is of interest (such as in simple biofeed-
back applications). However, notch filtering at 50 or 60
Hz will remove signal as well as power line components,
altering the spectral content and rotating the phase of the
recorded EMG, therefore altering the signal waveform.
Ferdjallah and Barr [27] described three adaptive digital
notch filters, which were designed to track and remove
60 Hz noise from biomedical signals. Although these
adaptive filters have some advantages over fixed notch
filters, signal as well as noise components would still be
removed from recorded EMG. Baratta et al. [3] sug-
gested a simple method for removing power line artefact
from EMG in the time domain. The amplitude and phase
of the fundamental frequency of the power line inter-
ference is estimated from a quiet segment of the EMG
recording. A sinusoidal waveform with the same ampli-
tude and phase as the interfering signal is then subtracted
from the entire EMG record. This method assumes that
the amplitude and phase of the power line artefact do
not change over the duration of the EMG recording ses-
sion, which is true only under restricted experimental
conditions. Widrow et al. [73] decribed an adaptive
interference cancellation method in which a reference
input, which provides a signal correlated with the cor-
rupting or interference signal, is adaptively filtered and
subtracted from the corrupted signal, giving an estimate
of the true signal. The basic element of the system is
the LMS (least mean square) adaptive filter. This method
can be applied for interference reduction wherever a ref-
erence “noise” signal can be obtained simultaneously
with the corrupted signal. In their paper, Widrow et al.
[73] demonstrated the ability of the adaptive cancellation
method to reduce power line interference in ECG rec-
ordings. Ider and Koymen [40] described a similar algor-
ithm for off-line removal of power line interference in
ECG recording. This method involves monitoring a
power line interference reference signal during signal
recording and subtracting the interference signal, after
appropriate scaling and phase shifting. The algorithm
can be made adaptive to track changes in the interference
signal over time. Both the algorithms described by Wid-
row et al. [73] and Ider and Koymen [40] would be
appropriate for use in EMG recording to remove inter-
ference signals at the fundamental power line frequency
and at its harmonics. Finally, note that algorithms that
only remove signal at 50/60 Hz may have to be repeated
in order to reject harmonics of the power line frequency.
Often, these harmonics can contain more power than the
fundamental frequency.

In field trials, electromagnetic interference at fre-
quencies other than the power line frequency may be
present. How such interference is removed from the
EMG is determined by the frequency content of the

interfering signal. High frequency interference can be
adequately attenuated via analogue low pass filtering
before EMG data acquisition and storage. If the fre-
quency content of the interfering signal overlaps that of
the EMG, more sophisticated methods to remove the
interference, such as those discussed above for power
line interference, are required. In these cases, it is
important to understand the nature of the interfering sig-
nal and determine its frequency content.

2.5. Other noise sources

The noise and interference sources covered above are
the major sources of contamination in EMG signal rec-
ording. There are other sources, however, and it is
important to be aware of and to minimize the contami-
nation from these sources as well.

The electronic instrumentation used to amplify and
filter the EMG prior to signal recording or acquisition is
a source of broad band noise. In well designed instru-
mentation, the amplitude of this noise signal is small,
generally less than 1.5 µV RMS (referred to input and
in the 10–500 Hz frequency band) with the bipolar rec-
ording electrodes shorted to the system reference. Rela-
tive to EMG amplitude, Clancy and Farry [14] found
their RMS equipment noise to be 2.1±1.7% of the RMS
EMG at 50% MVC (or, approximately 1% of the EMG
amplitude corresponding to MVC). This level of noise
is usually lower than the noise due to the electrode–skin
interface plus any residual signal due to incomplete mus-
cular relaxation and does not present a serious problem
when EMG is recorded during moderate or high force
contractions, because the signal-to-noise ratio (the ratio
of EMG amplitude to noise magnitude) will be high. For
example, Clancy and Farry [14] found the total back-
ground noise (due to the electronics, electrode–skin
interface and any incomplete relaxation) to be broad
band and have an RMS value equal to 6.3±6.1% of the
RMS EMG at 50% MVC (or approximately 3% of the
EMG amplitude corresponding to MVC). However, for
low EMG signal levels, such as might be recorded dur-
ing low force tasks, it is desirable to minimize the instru-
mentation and electrode–skin interface noise. This noise
reduction may be accomplished by filtering the recorded
signal through a low pass filter with a sharp roll-off
characteristic and the corner frequency set at the upper
frequency of the EMG signal. This filter will remove the
high frequency components of the noise signal thereby
reducing the overall noise signal power and improving
the signal-to-noise ratio. The resultant “background”
noise level should be measured for each subject during
complete muscle relaxation, as it can vary considerably.

If the EMG signal is recorded on analogue tape before
digitization, noise is introduced by the recorder [31].
This noise includes flutter due to oscillations in tape
speed, wow due to a slight change in the tape speed,
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and tape noise. In most recent EMG recording situations,
analogue recording is by-passed and the EMG is
sampled directly for storage and off-line processing via
an analogue-to-digital (A/D) converter. There are two
issues to consider in signal sampling (or A/D
conversion): sampling rate and sampling resolution. The
sampling theorem states that a signal must be sampled
at a rate which is at least twice the highest frequency in
the signal in order to recover the complete information
content. If there are components in the signal at fre-
quencies higher than one-half the sampling rate, ambi-
guities will arise and information will be lost. This
phenomenon is called aliasing. To prevent aliasing, it is
essential to know the bandwidth of the sampled signal
so that the minimum sampling rate can be determined.
Most of the signal power in surface EMG is below 400–
500 Hz. Also, it is recommended that the analogue signal
be low pass filtered before sampling using a filter with
a sharp roll-off and a corner frequency at or below one-
half the sampling rate, taking care to preserve the band-
width of the signal.

A/D conversion resolution is determined by the num-
ber of bits per sample, which defines the number of dis-
crete levels into which the signal will be converted.
Typically A/D converters provide 8-, 12-, or 16-bits. A
16-bit A/D converter divides the input voltage range into
65,536 discrete levels, a 12-bit A/D converter into 4096
discrete levels, and an 8-bit A/D converter into only 256
discrete levels. At each sampling instant, the signal is
given the discrete value which is closest to the actual
signal level. Because sampling divides the signal into
a finite number of discrete levels, an error, called the
quantization error, is introduced and quantization noise
results. This noise is broad-band with an average magni-
tude of approximately one quarter of a bit (maximum
magnitude of one half of a bit). A 12-bit A/D converter
provides sufficient resolution for most EMG appli-
cations, provided the range of the converter is matched
to the maximum peak-to-peak amplitude of the signal
[46]. A 16-bit A/D converter may be preferable, since
the added resolution may eliminate the need for manual
gain selection of each EMG amplifier.

The EMG is occasionally contaminated by other
biosignals. The most common of these is the ECG,
which is frequently present when the EMG is recorded
from electrode sites on the trunk and neck. Redfern [64]
suggested a method for ECG removal from rectified,
smoothed EMG recorded from the erector spinae
muscles. EMG detected at the L3 spinal level was ampli-
fied, rectified and low-pass filtered using a time constant
of 50 ms. The time occurrences of the ECG pulses in the
data record were determined by cross-correlating with a
representative ECG pulse. The ECG’s were then
removed by replacing the data points between the start
and end point of the ECG by a straight line. The pro-
cessed EMG provided a reasonable representation of the

level of activity in the muscle. However, this method
results in a loss of signal information and, depending
on the application, the amplitude estimate may not be
acceptable. Redfern et al. [65] were able to effectively
remove ECG artefact from raw EMG recordings from
the rectus abdominis, external oblique and erector spinae
muscles by high pass filtering. A high pass corner fre-
quency of 20–30 Hz was found to be best to remove
ECG artefact with minimal impact on the total power of
the EMG. Akkiraju and Reddy [1] used adaptive noise
cancellation to remove ECG artefact from EMG
recorded from intercostal muscles. The adaptive noise
canceller was based on that of Widrow et al. [73] where
the ECG was recorded separately and used as the refer-
ence input to the noise canceller. The ECG artefact was
effectively removed from the EMG records by the adapt-
ive noise cancellation.

3. EMG amplitude estimation

This section will review the methods which are used
to estimate the EMG amplitude from recordings of the
EMG. Historically, Inman et al. [41] are credited with
the first continuous EMG amplitude estimator. They
implemented a full-wave rectifier followed by a simple
resistor–capacitor low pass filter. Early investigators
studied the type of non-linear detector which should be
applied to the waveform. This work led to the routine
use of analogue rectify and smooth (low pass filter) pro-
cessing, mean-absolute-value (MAV, a.k.a. mean-recti-
fied-value) processing and root-mean-square (RMS) pro-
cessing of the EMG signal to form an amplitude
estimate. (These simple techniques still dominate most
applied studies that incorporate EMG amplitude
estimation.) Because amplitude estimation of a random
signal shows a smaller variance when the samples are
uncorrelated, ensuing investigation found that it is
appropriate to decorrelate EMG samples. This process
is referred to as whitening. Finally, combining multiple
EMG channels into a single amplitude estimate has also
been shown to reduce estimator variance.

Emerging from this work, a standard cascade of six
sequential processing stages, as shown in Fig. 1, can be
used to form a general processor for EMG amplitude
estimation. The six stages are: (1) noise
rejection/filtering; (2) whitening; (3) multiple-channel
combination (including gain scaling); (4) demodulation;
(5) smoothing; and (6) relinearization. Noise rejection
and filtering have been described in detail above, and
will not be repeated here (except for the influence of
remaining additive noise on the whitening processes).
The correlation between neighbouring EMG samples is
a consequence of the limited signal bandwidth. The lim-
ited signal bandwidth reflects the actual biological gener-
ation of EMG and the low pass filtering effects of the
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Fig. 1. Cascade of processing stages used to form an EMG amplitude estimate. The acquired EMG m1(t) through mL(t) are all assumed to be
from bipolar electrodes placed over the same muscle. The EMG amplitude estimate is ŝ(t). In the “Detect” and “Relinearize” stages, d=1 for MAV
processing and d=2 for RMS processing.

tissues as the signal propagates from its source to the
measurement apparatus. Decorrelation, that is whitening,
makes the samples statistically uncorrelated, increases
the “statistical bandwidth” (a measure of the number of
statistical degrees of freedom in the data, defined in [5])
and reduces the variance of amplitude estimation. Mul-
tiple-channel combination is used to combine the infor-
mation from several electrode recordings made over the
same muscle. Demodulation rectifies the whitened EMG
and then raises the result to a power (either 1 for MAV
processing or 2 for RMS processing). Smoothing filters
the signal, increasing the signal-to-noise-ratio, albeit at
the expense of adding bias error to the estimate. Finally,
relinearization inverts the power law applied during the
demodulation stage, returning the signal to units of EMG
amplitude. Measures for evaluating the performance of
EMG amplitude estimates and techniques for
implementing processing stages 2 through to 6 will be
discussed in the following sections.

3.1. Measures of amplitude estimator performance

For objective assessment and comparison of EMG
amplitude estimators, measures of amplitude estimator
performance are required, a few of which are common
in the literature. When contraction is constant-force, con-
stant-posture and nonfatiguing, it is generally assumed
that the EMG amplitude should be constant. (The EMG
signal, of course, varies due to the random nature of
the signal.) To quantify the “quality” of the amplitude
estimate, it is common to define a dimensionless signal-
to-noise-ratio (SNR) as the sample mean value of the
amplitude estimate divided by its sample standard devi-
ation, where “sample” refers to an estimate for one
epoch. (This SNR should not be confused with SNR at

the input of the amplifier chain.) This measure, which is
the inverse of the coefficient of variation, is invariant
with respect to the gain of the EMG channel and makes
no assumption as to any relationship between EMG and
muscle force. Because SNR is a measure of the random
fluctuations of the EMG amplitude, better estimators
yield higher SNR’s. Note that some authors have used
the square of this measure as a performance index.

When force or posture is changing, SNR is no longer
a useful measure. In the case of computer generated sig-
nals (e.g. simulation models), the true EMG amplitude
is known. In these cases, common measures of agree-
ment (e.g. the RMS error between the true and estimated
EMG amplitudes) are used. In physiologic situations,
however, the true EMG amplitude is not known and
alternative measures of performance must be used. One
possibility is to display a real-time amplitude estimate
to a subject as a form of bio-feedback. The experimenter
generates a second target display for the subject to track.
The target is moved over the range of desired EMG
amplitudes, usually via computer control. The tracking
error (e.g. RMS error between the target amplitude and
the subject’s response) serves as a performance measure,
with better EMG amplitude estimators presumably pro-
viding lower error.

A common application of surface EMG is to estimate
muscle force. Typically, an EMG amplitude estimate is
formed from the EMG and then the amplitude is related
to some measure of output force, e.g. joint torque. Again,
better amplitude estimation is assumed to provide better
EMG-force estimation. Common measures of agreement
between the direct measurement of force (gold standard)
and the indirect estimate are used to evaluate the differ-
ence between the two techniques. Note that the ampli-
tude of EMG is affected by confounding factors other



8 E.A. Clancy et al. / Journal of Electromyography and Kinesiology 12 (2002) 1–16

than force. Among these are the muscle fiber action
potential amplitude and the distance between each active
motor unit and the skin. Both factors may change from
subject to subject, muscle to muscle, and even from time
to time during the same contraction. As a consequence,
EMG-based muscle force estimates must account for
these (and other) confounds, and results must be appro-
priately limited and interpreted.

3.2. Whitening

As mentioned above, it has been shown that applying
a whitening filter prior to demodulation and smoothing
improves the amplitude estimate
[10,14,16,18,21,23,28,34,37,38,45]. A whitening filter
outputs a theoretically constant, or “whitened,” power
spectrum in response to an EMG input. If EMG is mod-
eled as a discretely sampled Gaussian process, whitening
orthogonalizes the data samples, making them inde-
pendent. Zhang et al. [76] discuss the advantages of
whitening based on a model of EMG as the superpo-
sition of simulated motor unit action potentials.

Whitening is typically implemented via software sig-
nal processing algorithms. A whitening filter is formed
by first estimating the power spectral density (PSD) of
the EMG. Then, the inverse of the square root of the
PSD specifies the shape of the whitening filter. At least
three general methods to achieve whitening have been
described in the literature. First, for constant-force, con-
stant-posture, nonfatiguing contractions, it is common to
model the EMG as a wide-sense stationary (WSS),
amplitude modulated, autoregressive (AR) process
(software for doing so is readily available [50,63]). With
this model, the PSD of EMG, denoted Smm(ejw), can be
written as

Smm(ejw)�
a0

|1−�P
k�1

ake−kjw|
2 (1)

where the ai are the AR coefficients, P is the model
order, and w is frequency in rad/s. These coefficients are
fitted from a calibration contraction which is typically a
few seconds in duration. Once these coefficients have
been determined, whitening can be achieved on sub-
sequent recordings with a discrete-time moving average
filter, written as

y(n)�
1

�a0

x(n)�
−a1

�a0

x(n�1)�…�
−aP

�a0

x(n�P) (2)

where x(n) are the data input to the whitening filter, y(n)
are the whitened output data and n is the discrete-time
sample index. Model orders of 4–6 have been found suf-
ficient to model the PSD [16,34,71]. Fig. 2 shows an
example of whitening using this method, and Fig. 3

graphically depicts this method for designing a whiten-
ing filter. For contractions at 10% MVC and higher, this
technique has led to a 63% improvement in the SNR
[16]. Note that although most of the signal power in sur-
face EMG is below 400–500 Hz, whitening can recover
important amplitude information at frequencies well
above this range, improving the SNR (see [14,16] for
details). Unfortunately, this whitening technique seems
to fail at lower contraction levels due to the presence of
additive background noise (a feature of recorded EMG
which is generally not included in the EMG models
described above).

A second method for whitening is similar to the first,
but assumes that the PSD of the EMG can vary in a
general manner (i.e. not just restricted to an amplitude
modulated PSD), and thus the whitening filter must do
so as well. In this case, the PSD model is continuously
updated based on the most recent data input to the whit-
ener [7,23,24]. For the AR model approach described in
Eqs. (1) and (2), the AR coefficients would be written
as time-dependent, i.e. ak(n).

A third whitening method solves the limitation of the
first method for low contraction levels by modeling the
fact that EMG is invariably acquired in the presence of
an additive, broad-band measurement noise
[10,14,16,45,62]. Thus, the whitening filter should be
adapted, but the adaptation is not as general as that men-
tioned above. The adaptation specifically applies to an
amplitude modulated “ true” signal in the presence of
additive measurement noise. The adaptation scheme can
be determined in a calibration phase, based on the PSD
of the additive noise and that from a reference contrac-
tion. For example, Clancy and Farry [14] have formed
an adaptive whitener consisting of a non-adaptive
whitening filter (similar to the whitener of method one
above, except that an AR model is not used and the addi-
tive measurement noise is subtracted out of the power
spectrum prior to determining the filter shape), followed
by an adaptive Wiener filter. The Wiener filter adapts
the overall filter shape based on the relative contribution
of true signal to additive measurement noise. In experi-
mental studies of this technique, subjects tracked a ran-
domly-moving target on a computer screen with real-
time EMG amplitude estimates. With a 0.25 Hz band-
width target, adaptive whitening reduced the tracking
error halfway to that of the error achieved using force
feedback.

Compared to the adaptive whitening technique of
Clancy and Farry [14], the general technique of D’Ales-
sio et al. [23] is much less restrictive. It could provide
better whitening if, or to the extent that, the true PSD
shape changes with the EMG amplitude (or with
localized muscle fatigue). However, since each PSD esti-
mate is based on only a short segment of the most recent
data, each PSD estimate (and, therefore, the resulting
whitening filter) has a high variance. Hence, to the extent
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Fig. 2. Influence of whitening on the EMG amplitude estimate. Upper left is a 1 s portion of the EMG (total recording is 5 s). Lower left is the
corresponding torque. Upper right is the moving average RMS (245 ms window) unwhitened EMG amplitude estimate. Lower right is the moving
average RMS (245 ms window) whitened EMG amplitude estimate (4th-order AR model). Whitening improved the SNR (the sample mean value
of the amplitude estimate divided by its sample standard deviation) by 71%. The y-axis of each EMG plot is independently normalized and all
graph scales are linear. (Reprinted from [16] with permission,  1994 IEEE.)

that the EMG PSD is truly amplitude modulated, the
whitening method of Clancy and Farry is more stable
and repeatable. Future research is needed to compare and
contrast the strengths and weaknesses of these tech-
niques.

Although these adaptive techniques are still emerging,
the time is now appropriate to begin moving these
methods into settings in which reduced EMG amplitude
estimation variance is critical (e.g. instant-by-instant
evaluation of motion patterns, EMG-force processing).
For less demanding settings where reduced variance is
not critical (e.g. evaluation of average EMG amplitude
levels from long-duration recordings), whitening filters
have significantly less to offer and may not be worth the
added complexity.

3.3. Multiple-channel combination

Hogan and Mann [37,38] suggested that detecting
EMG using multiple electrode pairs placed on a single
muscle would provide a broader, more complete, meas-
ure of the underlying electrophysiologic activity, since
a single differential electrode obtains most of its signal
energy from a small portion of muscle underneath the

electrode. To avoid observing correlated (redundant)
information and to avoid the innervation zone, distinct
bipolar electrodes are placed along a line perpendicular
to the muscle fiber direction, away from the innervation
zone. (The two electrodes from each bipolar pair are
placed parallel to the muscle fiber direction.) Using four
such electrodes, Hogan and Mann [37,38] achieved an
SNR performance improvement of approximately 91%
compared to the single site rectify and low-pass filter
estimator of Inman et al. [41]. Other studies have also
found an improvement using multiple channels
[12,14,17,42,56,70].

Clancy and Hogan [17] combined the techniques of
signal whitening and multiple channel combination.
Sample results are shown in Fig. 4. For contractions
ranging from 10–75% MVC, a four channel, temporally
whitened processor improved the SNR 187% compared
to the estimator of Inman et al. [41]. For this four chan-
nel processor, it was found that simple gain normaliz-
ation of the four channels based on a single 5 s cali-
bration contraction at 50% MVC performed as well as
the complete spatial uncorrelation described by Hogan
and Mann [37,38].

Some limitations of multiple channel processing
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Fig. 3. Fixed whitening filter design. Upper left is a 1 s portion of the EMG signal (total recording is 5 s). Jagged plot at upper right is the
discrete Fourier transform estimate of the EMG PSD. Smooth plot is the 4th-order AR estimate of the EMG PSD. Lower right is the magnitude
response of the whitening filter formed from the AR PSD estimate and lower left is its sample response. (Reprinted from [16] with permission,
 1994 IEEE.)

should be mentioned. First, the fundamental assumption
that multiple electrodes are recording different “views”
of the same muscle may not always be appropriate. If
different portions of a muscle exhibit independent con-
trol capability or if EMG crosstalk is present, for
example, then it may be best to form amplitude estimates
from each available electrode, perhaps combining their
mutual information at some later stage in the analysis.
Second, Clancy [11] noted that when multiple channels
of EMG are recorded, the risk of failed recording chan-
nels (e.g. shorted electrodes, pick-up of large amounts
of unwanted noise, etc) grows with the number of elec-
trodes. Automated methods for locating and managing
failed channels may need to be developed. Third, the
added cost of the additional hardware must be weighed
versus the benefits in amplitude estimate performance.

3.4. Demodulation and relinearization

Treating the EMG as a zero mean, amplitude modu-
lated signal, Inman et al. [41] suggested demodulation
with a full-wave rectifier, the analogue equivalent of the
first-power (or absolute value) demodulator. Kreifeldt
and Yao [48] experimentally investigated the perform-

ance of six non-linear demodulators. Hogan and Mann
[37,38] used a functional mathematical model of EMG,
based on a model of EMG as a Gaussian random pro-
cess, to analytically predict that a second-power (or
RMS) demodulator would give the best maximum likeli-
hood estimate of the EMG amplitude for constant-force,
constant-posture, nonfatiguing contractions. Theoreti-
cally, the SNR with this model is: SNR�√2N, where N
is the number of statistical degrees of freedom in the
EMG [5]. Experimentally, they found no SNR perform-
ance difference between the RMS processor and a full
wave rectifier. Similarly, Clancy [10] consistently found
full wave rectification to be a small improvement (2–
8%) over RMS detection. These experimental results are
contrary to the predictions from Gaussian theory.

Surface EMG, particularly at higher contraction lev-
els, has frequently been assumed to be Gaussian distrib-
uted, that is, having a probability density function writ-
ten as

px(X)�
1

s�2p
e

−X2

2s2, ���X��, (3)

where the mean value is assumed to be zero, x is an



11E.A. Clancy et al. / Journal of Electromyography and Kinesiology 12 (2002) 1–16

Fig. 4. Multiple-channel EMG amplitude estimation. Upper left is the torque measured from a constant-force, constant-posture, nonfatiguing 25%
MVC. Upper right is the single-channel, unwhitened EMG amplitude estimate. Lower left is the single-channel, whitened EMG amplitude estimate.
Lower right is the 8-channel, whitened EMG amplitude estimate. All estimates use a 245 ms moving average RMS window. SNR is defined as
the sample mean value of the amplitude estimate divided by its sample standard deviation. The y-axis of each EMG plot is independently normalized
and all graph scales are linear. (Reprinted from [15] with permission,  1990 IEEE.)

EMG sample and s is the EMG amplitude. Some
research studies have found evidence to support this
assumption [16,66], while several others have found
EMG to have a distribution which is more sharply
peaked near zero than the Gaussian distribution
[6,39,53]. Indeed, at low contraction levels, gaps
between motor unit action potentials are clearly detect-
able and the distribution becomes sharper near zero.
Similar changes occur when the muscle is fatigued. (See
[6] and [19] for additional review of this topic.)
Recently, Clancy and Hogan [19] proposed an alterna-
tive model for the EMG probability density, based on a
Laplacian random process, written as

px(X)�
�2

2s
e

−√2
s

|X|, ���X��, (4)

where the mean value is assumed to be zero and s is the
EMG amplitude. The Laplacian density is more sharply
peaked near zero than a Gaussian density. They showed
that MAV processing (or first-order demodulation) gives
the maximum likelihood estimate of the EMG amplitude
in this case. Theoretically, the SNR with this model is:
SNR=√N, performance that is approximately 32%
inferior to that based on the Gaussian model. Thus,
minor variations in the probability density of the EMG
may result in large SNR decrements. Experimentally, it

was found that the observed densities from constant-
force, constant-posture, nonfatiguing contractions fell in
between the theoretic Gaussian and Laplacian densities.
On average, the Gaussian density was the better fit as
shown in Fig. 5. For amplitude estimation, MAV pro-
cessing had a higher SNR than RMS processing by 2.0–
6.5%. Further simulation studies showed certain density
shapes between Gaussian and Laplacian for which MAV
processing was best. These simulation findings were
consistent with the experimental results. Combined,
these results suggest that forming EMG amplitude esti-
mates via MAV processing may be at least as justified as
RMS processing, both from theoretical and experimental
perspectives. Thus, either detector can be used in prac-
tice, and there is little reason to debate between them.

3.5. Smoothing

For constant-force, constant-angle, non-fatiguing mus-
cular contraction, the SNR of EMG amplitude estimates
using root-mean-square detection has been shown theor-
etically (using a Gaussian model for the signal) by
Hogan and Mann [38] to be related to the statistical
bandwidth [5] of the EMG signal (Bs, in Hz), the number
of EMG channels recorded on a muscle (L), and the
length of the smoothing window (T, in seconds) applied
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Fig. 5. Normalized probability density function estimate of EMG.
Experimental density (solid line) is the average of 266 constant-force,
constant-posture, nonfatiguing contractions at 50% MVC from triceps
muscles. Error bars indicate one standard deviation above and below
the average. Line with “+” indicates the Laplacian density, line with
“o” the Gaussian density. (Modified and reprinted from [19] with per-
mission,  1999 IEEE.)

to the data (see also footnote 1 in [67]) as:
SNR�√2·2Bs·L·T. This formula assumes that each EMG
channel has the same statistical bandwidth. Note that for
sampled data, T=Ns/f, where Ns is the number of samples
in the smoothing window and f is the sampling fre-
quency in Hz. Experimentally, a few studies in the litera-
ture provide evidence for an increasing SNR with win-
dow length [41,47,70]. St-Amant et al. [67] conducted
a systematic, experimental study of the influence of
smoothing window length on SNR for EMG recorded
from biceps and triceps muscles during non-fatiguing,
constant-force, constant-angle contractions. They found
that both RMS and MAV processors increased the SNR
in a square root fashion with window length. The shape
of this relationship was consistent with theoretical pre-
dictions [19,37,38], however none of the processors ach-
ieved the absolute performance level predicted by the
theory.

When either the exerted force, or muscle length, or
both change during contraction, selection of an appropri-
ate smoothing window length has been a topic of study
[12,36,41,55,75]. In this case, variance (random) errors

in the EMG amplitude estimate are diminished with a
long smoothing window; however, bias (deterministic)
errors in tracking the signal of interest are diminished
with a short smoothing window. For fixed-length
smoothers, an appropriate balance needs to be estab-
lished. A model-based approach was taken by Miyano
et al. [55] in developing a procedure to obtain the opti-
mal time constant for a full-wave rectified detector. They
showed that the optimal time constant could be determ-
ined by minimizing a nonlinear equation written as a
function of the autocorrelation of EMG amplitude.
Clancy [12, Appendix] derived a method for optimal
selection of a fixed window length. Different results
were derived for causal and noncausal (midpoint moving
average) processing. For noncausal processing, the opti-
mal window length was found to be:

NNoncausal

f
��72

g �
1
5
·� s2

Ave

(s̈2)Ave
�1

5
(5)

where N is the window length (samples), f is the sam-
pling frequency (Hz), s2

Ave is the average value of the
square of EMG amplitude, and (s̈2)Ave is the average
value of the square of the second derivative of EMG
amplitude. The quantities s2

Ave and (s̈2)Ave take different
values for different tasks. The constant g is a conglomer-
ation of three other constants that specify the number of
statistical degrees of freedom in the data and is determ-
ined by the statistical bandwidth of the EMG, the num-
ber of EMG channels and the detector type (see [12]
for details). Using RMS processing and assuming the
Gaussian model for EMG, then g=2BsL (Bs and L are
defined above). This value is never fully achieved since
neither whitening nor spatial uncorrelation perform per-
fectly, and the signal model is not exact. Therefore,
Table 1 shows the value of g determined experimentally
by St-Amant et al. [67] for eight different processors.
For causal processing, the optimal window length was
found to be:

NCausal

f
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1
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·� s2
Ave

(ṡ2)Ave
�1

3

(6)

where (ṡ2)Ave is the average value of the square of the
first derivative of EMG amplitude.

Rather than find one fixed-length window which is
optimal for an entire application, several studies have
attempted to improve the amplitude estimate by dynami-
cally adapting the window length to the local character-
istics of the EMG [12,21,22,29,42–44,51,61]. In direct
comparison to the best fixed-length smoother, these
adaptive smoothers have found little or no advantage for
generic applications, with a few exceptions. Evans et al.
[26] proposed a logarithmic transformation of the myoe-
lectric signal, allowing use of the theory of Kalman fil-
ters to estimate the amplitude of the transformed signal.

In all of the above, selection of the window length
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Table 1
Degrees of freedom constant g for several different EMG processors. This constant is determined by the statistical bandwidth of the EMG, the
number of EMG channels and the detector type (see [12] for details)

Degrees of freedom constant g
EMG processor

(Hz)
Detector Whitened versus unwhitened Number of EMG channels

Mean-absolute-value (MAV) Unwhitened 1 263
Mean-absolute-value (MAV) Unwhitened 4 546.5
Mean-absolute-value (MAV) Whitened 1 639
Mean-absolute-value (MAV) Whitened 4 1427
Root-mean-square (RMS) Unwhitened 1 234.5
Root-mean-square (RMS) Unwhitened 4 463.5
Root-mean-square (RMS) Whitened 1 617.5
Root-mean-square (RMS) Whitened 4 1262

was discussed in view of optimizing the amplitude esti-
mate only. For applications such as EMG-force esti-
mation, the amplitude estimate is the input to an ensuing
procedure (e.g. EMG amplitude to force model). In these
cases, smoothing may be skipped entirely (leaving all of
the smoothing to the ensuing application), or the smoo-
thing parameters may be dictated by the requirements of
the application.

Finally, it was previously noted that additive noise is
invariably recorded along with the “ true” EMG. Some
researchers treat this noise after the smoothing stage by
subtracting the noise level from the smoothed EMG
amplitude estimate (either prior to or after
relinearization). For several reasons, this straight-for-
ward offset subtraction does not appear to provide the
best treatment of the data. A few comments are in order.
First, when the EMG amplitude is low, background noise
must be attenuated in (or before) the whitening stage,
else whitening will fail [18]. Thus, the noise must be
treated earlier in the processing chain. Second, there do
not appear to be any theoretical or experimental argu-
ments for offset subtraction of background noise after
demodulation. Clancy ([10, Appendix C]) showed that
offset subtraction (in the power domain for an RMS
processor) is best (in the maximum likelihood sense) if
both the EMG and noise power spectra are white (and
the signals are Gaussian distributed). However, clearly
their spectra differ, with background noise being rather
broadband, and EMG being band-limited. Accordingly,
a few groups have developed noise attenuation methods
that adaptively filter the signal to optimally remove the
background noise [10,14,18,45,62]. Again, these
methods attenuate the background noise prior to
demodulation. Third, some authors have considered the
case of theoretical distributions to argue that subtraction
in the power domain (after demodulation) is appropriate.
For RMS processors, they are noting that if two inde-
pendent random variables are summed, the variance of
the sum is the sum of the individual variances. Hence,
the variance of one random variable (noise-free EMG)

is equal to the variance of the sum (noise-free EMG plus
noise) minus the variance of the other random variable
(noise). While this argument is true for theoretical distri-
butions in which the variance is known, it is not neces-
sarily true for estimations based on a finite sample of a
distribution. Finally, in spite of all the above discussion,
the offset subtraction technique certainly provides some
EMG amplitude estimate, even if it is sub-optimal. In
cases where whitening is not desired, perhaps this esti-
mator is sufficient. Theoretical and experimental study
is needed to investigate this possibility.

4. Summary and conclusions

In this paper, techniques for reducing noise from
EMG recordings and forming advanced amplitude esti-
mates from the noise-attenuated signal have been
reviewed. These techniques are important in low effort,
high precision tasks and applications requiring a high-
fidelity EMG amplitude estimate. Recent research into
improving the amplitude estimate via EMG signal
whitening and multiple channel combination has been
highlighted. The discussions relative to the electrode
apparatus and preparation were not meant to be compre-
hensive. Other issues, such as inter-electrode distance,
electrode location on the muscle, etc. are also necessary
to consider in recording situations, but have not been
covered here. Nonetheless, the two most dominant issues
in noise reduction are proper skin preparation prior to
electrode placement and the use of active electrodes.
Several unwanted signal sources (e.g. electrode–skin
contact noise, motion artefact, cable motion artefact,
power line interference) are attenuated by reducing the
electrode–skin impedance through proper skin prep-
aration. Active electrodes, which buffer the signal at the
recording site, almost completely eliminate cable motion
artefact and thus are recommended for applications in
which there is appreciable subject motion during data
recording. When these basic methods do not sufficiently
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reduce noise, artefacts and interference, then other
approaches are appropriate, including: high pass filtering
in the range of 10–20 Hz (to reject motion and ECG
artefacts), adaptive interference cancellation based on a
correlated reference signal (to reject motion artefact,
power line interference and ECG artefacts), use of a
“driven right leg circuit” (to cancel power line
interference), and the use of various linear and non-lin-
ear power-line attenuation filters. Appropriate use of
each would serve to increase the effective CMRR of
the system.

Once the noise in the acquired EMG has been attenu-
ated, five steps remain to produce an amplitude estimate:
whitening, multiple-channel combination, demodulation,
smoothing and relinearization. As detailed herein, both
whitening and multiple-channel combination reduce the
variance in the amplitude estimate without increasing its
bias, while smoothing reduces variance at the expense of
increased bias. The future of EMG amplitude estimation
should combine all of the performance improvements
described herein into a robust, high-fidelity processor.
Lastly, instrumentation/software utilizing all of these
techniques must remain simple so that users can easily
incorporate the benefits of higher fidelity amplitude esti-
mation into applied EMG projects and research investi-
gations.
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