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Detection of convulsive seizures using surface electromyography
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Summary
Bilateral (generalized) tonic–clonic seizures (TCS) increase the risk of sudden

unexpected death in epilepsy (SUDEP), especially when patients are unattended.

In sleep, TCS often remain unnoticed, which can result in suboptimal treatment

decisions. There is a need for automated detection of these major epileptic sei-

zures, using wearable devices. Quantitative surface electromyography (EMG)

changes are specific for TCS and characterized by a dynamic evolution of low-

and high-frequency signal components. Algorithms targeting increase in high-

frequency EMG signals constitute biomarkers of TCS; they can be used both for

seizure detection and for differentiating TCS from convulsive nonepileptic sei-

zures. Two large-scale, blinded, prospective studies demonstrated the accuracy of

wearable EMG devices for detecting TCS with high sensitivity (76%-100%). The

rate of false alarms (0.7-2.5/24 h) needs further improvement. This article summa-

rizes the pathophysiology of muscle activation during convulsive seizures and

reviews the published evidence on the accuracy of EMG-based seizure detection.
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1 | INTRODUCTION

Unpredictability and unawareness of seizure occurrence is
distressing and disabling for patients with epilepsy and
their caregivers.1 This contributes to social isolation and
decreased quality of life. There is a well-documented need
for wearable seizure detection devices.2–8 Bilateral or gen-
eralized tonic–clonic seizures (TCS) may lead to injuries,
and they constitute a primary risk factor for sudden unex-
pected death in epilepsy (SUDEP), especially when patients
are unattended.9,10 Wearable seizure detection devices have
been suggested as a tool to prevent SUDEP,1,9,10 and a
statement of research need on epilepsy deaths from UK
research teams in 2014 encouraged development of seizure
detection devices that may prevent SUDEP.11

Treatment as well as clinical trials of antiepileptic drugs
(AEDs) typically use self-reporting of seizures. However,
this is unreliable: in a video–electroencephalography (EEG)
monitoring unit, 61% of the seizures remained unnoticed
by the patients, especially focal to bilateral TCS (or

secondarily generalized tonic–clonic seizures [GTCS]).12

Patients who appear to be seizure-free and not needing of
further antiepileptic drug (AED) adjustments may have
undetected seizures, especially in sleep where, in addition,
they are exposed to an increased risk of SUDEP.9,10 Hence,
there is a need for wearable seizure-detection devices that
can both provide better, objective data about when and
how often seizures occur, and alert assistance.

Wearable devices and gadgets are becoming widely
used. Their impact is already being felt in education, com-
munication, navigating, and entertainment, and this trend is
now reaching healthcare applications, including seizure
detection. There are thousands of wearable devices on the
market that measure health parameters and signs. Market
research reports have predicted an exponential growth in
this field: the number of wearable devices shipped will rise
from about 13 million in 2013 to 130 million in 2018, and
market size will jump from $1.4 billion in 2013 to $19 bil-
lion in 2018.13,14 Companies developing wearable health-
care devices include key players like Apple, Fitbit, Google,
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and Samsung.14 In contrast with the rapid technological
development, the scientific evidence for the diagnostic
accuracy of these wearable healthcare devices is disappoint-
ingly scarce, which limits their integration into rational
medical decision making and reimbursement by healthcare
providers.

Signals from muscles recorded with surface electromyo-
graphy (sEMG) seem to be a promising modality for detec-
tion of motor seizures. In this review, we summarize the
quantitative sEMG changes during convulsive seizures that
constitute the basis for seizure detection, and we review
the published evidence on EMG-based, wearable seizure-
detection devices.

2 | PATHOPHYSIOLOGY OF
MUSCLE ACTIVATION DURING
CONVULSIVE SEIZURES

Motor neurons communicate with muscles via the neuro-
muscular junction. Thus, electric signals from muscles
(EMG) directly reflect the activation of motor neurons
by seizure activity. Recording EMG with surface elec-
trodes is easy, and qualitative (visual) analysis of these,
particularly in polygraphic registrations, helps characterize
motor seizures.15,16 However, until recently, quantitative
analysis of ictal EMG signals received little attention.
Besides gaining further insight into the pathophysiology
of motor seizures, quantitative ictal EMG changes seem
to represent excellent electrophysiological biomarkers of
these.

2.1 | Muscle activation during tonic and
tonic–clonic seizures differs from physiological
muscle activation

Quantitative analysis of the entire duration of tonic seizures
(TS) and TCS demonstrated that muscle activation was sig-
nificantly different during these motor seizures compared
to physiological muscle activation—maximal voluntary
contraction (MVC) during seizures acted by healthy volun-
teers.17 Furthermore, quantitative EMG during TS was dif-
ferent from the tonic phase of the TCS.17 TS had EMG
signals in higher frequency domains (expressed as higher
median frequency and as increase in the relative power in
the frequency domain above 100 Hz) compared to MVC
and to TCS.17 The amplitude of the EMG signals (ex-
pressed as root mean square of the signal) was significantly
higher during the tonic phase of TCS, compared to TS and
to MVC.17 The EMG-EMG coherence between muscles on
the left and right sides was significantly higher during
motor seizures (TS and TCS) compared to the acted ones
(MVC).17

2.2 | Dynamic changes of quantitative EMG
during TCS

Wavelet analysis showed specific dynamic evolution
(Figure 1) of the TCS, characterized by changes in the
low-frequency (LF) wavelet component (2-8 Hz) and the
high-frequency (HF) wavelet component (64-256 Hz).18

These changes determined the following phases: tonic-
onset, tonic-maintenance and clonic.18

There was a gradual amplitude increase in the tonic-
onset phase (Figure 1), and both LF and HF components
increased.18 In the tonic-maintenance phase, the gradual
amplitude increase continued, and there was a specific dis-
sociation between HF and LF components; whereas the HF
component increased dramatically, there was a total sup-
pression of the LF component. A similar dissociation was
not observed between HF and LF in physiological muscle
activation (MVC during seizures acted by healthy volun-
teers) or convulsive psychogenic nonepileptic seizures
(PNES): in these subjects, both wavelet components were
constantly present throughout the episode, and the onset of
muscle activation was not gradual.18,19 The transition from
the tonic to the clonic phase was characterized by a marked
increase in the LF component (clinically corresponding to
the “vibratory” movements observed in video recordings of
TCS) and decrease of the HF component (Figure 1).18

The ratio between HF and LF components constituted a
reliable quantitative parameter, both for objective determi-
nation of the seizure duration, and for the segmentation of
the TCS into the phases described above (Figure 1).18 The
median duration of TCS was 85 s (73-93 s).18

2.3 | Silent periods and the clonic phase

As TCS evolved, tonic muscle activity became interrupted
for longer and longer periods by suppression of the muscle
activity (silent periods) characterizing the clonic phase

Key Points

• There are specific changes in quantitative surface
EMG parameters during TCS

• High-frequency components of the EMG signal
increase at onset of TCS

• The ratio of high- and low-frequency EMG
wavelet components provides an objective mea-
sure for determining duration of the TCS phases

• Wearable devices using EMG-based algorithms
accurately detect TCS

• EMG signals differentiate between TCS and psy-
chogenic nonepileptic convulsive seizures
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(Figure 2).18 The increase in duration of the silent periods
was exponential (Figure 2), which further differentiated
them both from acted seizures (by healthy volunteers) and
from convulsive PNES.18,19

Duration of the clonic discharges between the silent
periods was remarkably stable, around a median value of
209 msec (183-67 msec).18 Such short contractions could
not be reproduced by acting seizures in healthy volun-
teers: duration of the acted jerks was 1326 (817; 1749)
msec. The energy of the clonic discharges peaked after
the vibratory period of the clonic phase and the right-left
EMG coherence also continued to increase and peaked
during the clonic phase.18 Thus, both intramuscular and
intermuscular synchronization peaked during the clonic
phase.18

2.4 | Electrophysiological biomarker of TCS

The specific quantitative EMG changes during the onset
phase of the TCS constitute the pathophysiological back-
ground for a seizure biomarker: there is a marked increase
in the HF component (Figure 1), and an increase in the
amplitude of the signal.18 However, to be implemented as
an algorithm that runs real-time, the electrophysiological
biomarker needs to use little computational power. By fil-
tering EMG signals with a high-pass filter of 150 Hz (Fig-
ure 3A), the algorithm operates in the frequency domain in
which seizure-specific signals occur.20 The increase in fre-
quency is easily monitored using the automated counting
of the number of zero-crossings (per second) of the filtered
EMG signal (Figure 3B).20 To emphasize the need for an

FIGURE 1 Quantitative surface EMG
of a TCS. A, EMG signal of the TCS. B,
Root mean square (RMS) throughout the
TCS. C, Signals corresponding to the high-
frequency (black traces) and low-frequency
(gray traces) of the EMG signal. D,
Normalized amplitudes corresponding to the
low-frequency (red) and high-frequency
(blue) components. E, High-frequency/low-
frequency ratio
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increase in amplitude, a hysteresis of �50 lV is added to
the algorithm.20 When the number of zero-crossings / s ex-
ceeds the threshold for a predefined period of time, the sei-
zure is identified and an alarm is triggered (Figure 3B).20

For more details about quantitative analysis of surface

EMG and electrophysiological biomarkers of convulsive
seizures, the reader is referred to a recently published
review.21

2.5 | Seizure severity assessed by quantitative
EMG

Using the objective method, based on the HF/LF ratio for
segmentation of the TCS, the tonic-maintenance phase
appeared to have a remarkably constant duration (me-
dian = 11s; 8-13 s).18 However, duration of both tonic-
onset and clonic phases was highly variable, and correlated
to seizure severity (duration of the TCS and frequency of
their occurrence). Short tonic-onset phases were correlated
with long clonic phases and with higher seizure occurrence,
whereas longer tonic-onset phases were correlated with
short clonic phases and low seizure occurrence.18

Because both in the tonic-onset phase and the start of
the clonic phase there is an increase in the LF component,
it is reasonable to assume that these are manifestations of
intrinsic inhibitory mechanisms counteracting the develop-
ment of seizures (at onset) and eventually terminating them
(in the clonic phase). When inhibitory mechanisms are
strong, it takes longer for the ictal processes to overcome
them (long tonic-onset phase), and shorter for the inhibitory
mechanisms to stop the seizure (shorter clonic phase). For
weaker inhibitory mechanism it is the other way around
(ie, short tonic-onset and long clonic phase).18

3 | EMG-BASED AUTOMATED
DETECTION OF CONVULSIVE
SEIZURES

We searched PubMed for relevant articles published since
1950. We used 2 separate search strings: (1) “(EMG OR
electromyography) AND (seizure AND detection)”; (2)
“(wearable OR mobile) AND (seizure AND detection),”

FIGURE 2 Clonic phase of the TCS.
A, EMG signal during the clonic phase of
the TCS. B, The vertical axis shows the
duration of the silent periods, and the
horizontal axis shows the time from
the start of the clonic phase. Note the
exponential increase in the duration of the
silent periods, as the seizure evolves

FIGURE 3 The generic EMG-based seizure detection algorithm.
A, EMG signal after high-pass filtration (150 Hz). B, Evolution of
the number of zero-crossings (vertical axis) throughout the TCS; the
stippled horizontal line marks the threshold for identifying the seizure
activity; the yellow horizontal line depicts the minimum number of
time-periods with zero-crossings exceeding the threshold, necessary
for triggering seizure alarm (red arrow)
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and did not use any language restrictions. We found 81
PubMed entries. In addition, we identified 22 articles in the
reference lists. After reading the abstracts, 44 studies were
discarded because they were not related to seizure detection
using noninvasive wearable devices in humans. Eight arti-
cles were reviews, 5 articles were surveys on the needs and
expectations of patients concerning wearable seizure detec-
tion devices, and 4 papers were on differentiating between
epileptic and nonepileptic seizures. Thus, we identified 42
original research papers on wearable seizure detection
devices. Detection of TCS or TS has been addressed in 12
papers, 7 using EMG alone and 5 using EMG in combina-
tion with other modalities.

A seizure-detection algorithm using the electrophysiologi-
cal biomarker described earlier20 has been optimized in a
phase-2 study,22 using conventional amplifiers in epilepsy
monitoring units (EMUs).23 Based on EMG data from 22 TCS
recorded from 11 consecutive patients, using receiver-operat-
ing characteristic curve analysis, the detection-threshold
(number of zero-crossings / s), and the time-period above, the
threshold necessary to trigger an alarm were determined, so
that the generic (not patient-tailored) algorithm achieved a sen-
sitivity of 100%, false alarm rate (FAR) of 1/24 h, and mean
detection latency of 13.7 s.23

Another phase-2 study22 that retrospectively analyzed
EMG signals recorded with conventional amplifiers in
EMU, reported a different approach.24 The algorithm used
Hotelling’s T-squared power analysis of compound muscle
action potentials, and it was patient-tailored: MVC was ini-
tially measured in each patient to establish the baseline
(physiologic) threshold.24 In offline (retrospective) analysis,
the algorithm detected 20 of the 21 TCS, in 11 patients
(sensitivity: 95%).24 The average detection-latency was
20 s, which was longer than for the generic algorithm. This
is probably explained by the seizure phase that triggers the
alarm (onset phase for the generic algorithm and early tran-
sition to clonic phase in the patient-tailored algorithm).

Both algorithms have been implemented into dedicated,
wearable devices (Figure 4). The algorithm based on the num-
ber of zero-crossings was implemented into EDDI (Epileptic
seizure Detector Developed by IctalCare), placed on the belly
of the biceps muscle via a hypoallergenic patch that contained
the EMG electrodes (Figure 4B). EDDI obtained CE (Con-
formit�e Europ�eenne) marking registration in 2013. Initially
EDDI was tested in a pilot study.25 Successively, a modified
version of the algorithm was validated in a prospective, multi-
center study of real-time seizure detection, using the wearable
EMG-device and predefined cutoff values for triggering sei-
zure-alarms,26 thus qualifying as a phase-3 trial.22 The gold
standard was identification (by trained experts) of seizures
recorded during video-EEG monitoring. Seventy-one consecu-
tive patients were recruited in 3 centers (20 patients with
TCS). The sensitivity of EDDI for detecting TCS was 94%

(30 of 32 TCS were detected; 95% confidence interval [CI]
86%-100%). Median seizure detection latency was 9 s (range:
�4 to 48 s). The FAR was 0.67/day. No adverse events
occurred, and none of the patients withdrew from the study.

The algorithm based on Hotelling’s T-squared power
analysis was implemented into a SPEAC (Sensing Portable
sEMG Analysis Characterization system) developed by
Brain Sentinel (Figure 4A). The device was granted de
novo clearance by the U.S. Food and Drug Administration
(FDA) in 2017. The performance of the device was tested
in a large multicenter study: 37 of the recruited 199
patients (in 11 EMUs) had TCS.27 EMG was recorded
prospectively, using the dedicated, wearable device.27

However, data analysis and seizure detection was not real-
time: it was done offline (after seizure occurrence time, ie,
retrospectively) from data archived at a central site.27 There
was no single, predefined cutoff value, but the performance
of the algorithm was tested across a wide range of thresh-
olds (95-255). Therefore, according to the standards pro-
posed for seizure detection trials,22 this study qualifies as
phase-2. At the threshold setting of 145, the algorithm had
a sensitivity of 76%: it detected 35 of the 46 TCS (95% CI
61%-87%). The FAR was 2.52/ 24 h.27 The electrodes in
the SPEAC system were placed perpendicular to the mus-
cle fibers. Therefore, when the device was placed more
than 45 degrees from the midline of the belly of the biceps
(this was the case in 29 patients included into the study),
crosstalk between biceps and triceps muscles caused a
reduction in the signal amplitude (in-phase cancellation),
greatly reducing sensitivity of the algorithm.27 In the EDDI
system, electrodes were placed parallel to the muscle fibers,
which prevented crosstalk and in-phase cancellation.26 In a
subgroup of patients in whom the device was placed over
the midline of the biceps muscle (n = 149), the sensitivity
reached 100%: the device detected 29 of 29 TCS (95% CI
88%-100%) that occurred in the 24 patients with a properly
placed device, with a latency of 7.7 s and FAR of 1.44/
24 h.27 Mild to moderate adverse events were reported in
28%, and 15% of the recruited patients withdrew from the
study during EMG monitoring.27 An important feature of
the SPEAC system is that EMG data are stored for offline
review by practitioners.

EMG was included into multimodal systems for detec-
tion of TCS, along with accelerometers in wearable
devices,28–31 and along with EEG and ECG signals in the
EMUs.32 Although the small-scale studies reported an
improved performance in the multimodal setting as com-
pared to the unimodal one, the sensitivity and FAR of
these multimodal TCS detectors was not superior to what
the 2 large-scale multicenter studies reported on the uni-
modal, EMG-based devices. For a detailed review on mul-
timodal seizure detection, the reader is referred to another
paper of this supplement of Epilepsia.33
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We have found 2 patents corresponding to the commer-
cially available EMG-based seizure-detection devices.34,35

Our PubMed search identified 4 prospective studies on
clinical validation of accelerometry-based, wearable devices
using real-time detection of TCS.36–39 Sensitivity and FAR
of these devices were inferior or similar to the EMG-based
ones (see the detailed review on accelerometry-based seizure
detection devices in this supplement of Epilepsia40). Com-
pared with EMG-based detection, detection latencies of these
devices are longer, since alarms are triggered during the
vibratory or the clonic phase. However, they are easy to use
because they do not require self-adhesive electrode patches.

Detection of TS using surface EMG proved to be less suc-
cessful than detection of the TCS. TS have significant intra-
and intersubject variability. Hence, a generic algorithm was
not feasible.41 With patient-specific algorithms, complete sei-
zure detection was achieved in a retrospective analysis of
EMG signals, in a small number of patients, yet with a much
higher FAR (between 0.08 and 7.9).41 Detection of TS is chal-
lenging due to the low amplitude, which makes TS similar to
the patterns given by high-frequency noise (induction arti-
facts). The other challenge encountered in this study was phys-
iologic muscle activation at a smaller intensity than MVC.
This submaximal muscle activation had higher frequency con-
tent than MVC, bringing it closer to the features of TS.41

In addition to seizure detection, EMG can be used for
differentiating epileptic from nonepileptic (psychogenic)
convulsive seizures. Inspection of the quantitative EMG
features specific for TCS (temporal dynamics of the HF/LF
ratio and the evolution of the silent periods) accurately dif-
ferentiated between epileptic and nonepileptic convulsive
seizures.19 Using the EMG-based biomarker of TCS, an
automated algorithm differentiated between TCS and con-
vulsive PNES with an accuracy of 95%.42

4 | CONCLUSION

Specific, quantitative EMG changes characterize TCS.
Besides giving insight into the dynamics of TCS, these
quantitative changes constitute an excellent basis of electro-
physiological biomarkers for TCS. Two large-scale, multi-
center, prospective trials on 2 different wearable seizure-
detection devices demonstrated that EMG-based algorithms

detect TCS with a sensitivity of 94% and FAR of 0.7/24 h
(EDDI) and, respectively, a sensitivity of 76% and FAR of
2.5/24 h (SPEAC). In the subgroup of patients with opti-
mized placement of EMG electrodes, sensitivity achieved
100%, with a FAR of 1.4/24 h (SPEAC). These studies
provide robust evidence on the accuracy of EMG-based
seizure detection using wearable devices. However, the
FAR in a subgroup of patients is still higher than accept-
able, and this needs further improvement. Besides seizure
detection, the algorithms can differentiate between TCS
and nonepileptic convulsive episodes. For the detection of
tonic seizures, the EMG-based approach appears at present
to be less robust. The major limitation of EMG-based sei-
zure detection is that this approach detects only convulsive
seizures. A comprehensive seizure detection system for
clinical use will need additional components.
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