

Battery will drive the world ? and when ?

Confidential | CR/AEP | 10/06/2008 | © Robert Bosch GmbH 2008. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

The "Powertrain-Map"

Beolk Be Better Be Bosch

2

Development Roadmap E-Mobility

CR/AEP3, SBL | 06/19/2009 | © Robert Bosch GmbH 2009. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Future (E)- Mobility Demand

CR/AEP3, SBL | 06/19/2009 | © Robert Bosch GmbH 2009. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

EV System

→ The Battery Module is one component in highly integrated system

Example State of the Art Energy Storage Systems

Tesla Roadster (EV) Battery

- 150 Ah | 366 V | 53 kWh | 200 kW | 450 Kg
- 6831 2.2Ah (Panasonic?) 18650 type cells
- 99 cells in series and 69 cells in parallel
- Passive safety for the cells in parallel
- 7 years pack lifetime and 500 full cycles (160,000 km)
- Since 2008: 250+ produced and 1000+ reserved

Mercedes S-Class (HEV) Battery

- 6.5 Ah | 126 V | 0.8 kWh | 19 kW | 25 Kg
- 35 Johnson-Control Saft cells / Pack design Continental
- · Cells are connected in series
- Active safety single cell supervision
- 10 years pack lifetime and 600.000 shallow cycles (160,000 km)
- Middle of 2009 can be purchased

\rightarrow not many Li-Ion Application on the Road Today

EV-battery requirements (on cell level)

Cell Types in General

8

Lithium secondary cells can be devided into three different types:

- All types are in development for EV Applications
- All types might carry charges from <1Ah to 100Ah
- The cell design (e.g. housing, electrodes, electric contacts and <u>all</u> other passive and active components result in the overall performance and safety
- Each cell type has its specific advantages and disadvantages

As of today there is no clear trend towards one favorite cell design

Key Success Factors for Automotive Applications

BOSCH

From Material to Battery System

Battery System Architecture

Battery System

Interfaces

BOSCH

Modeling and Simulation

CR/AEP3, SBL | 06/19/2009 | © Robert Bosch GmbH 2009. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Multistage Validation

Future Li-Ion Battery Cell Technology

Compact class vehicle up to 1000 kg with a maximum Li-ion battery weight of 200 kg, P_{max}/P_{av}=100 kW / 70 kW

Battery Spec. energy = 0.7 Cell spec. energy DOD = 80%

Battery spec. power = 0.7 Cell spec. power

→ Increase energy- and power density through future cell technology, improved battery management and better safety.

→ Cell Technology: Li-Sulfur, Li-Air and oxide cathodes

Intelligent BMS of the Future

Further specification details will be available once the future EV and EV system is understood

Energy Cost for Mobility

Assumptions taken:

Compact class vehicle up to 1000 kg €/ICE = €/BEV w/o battery

ICE consumption = 6 I/100km Fuel costs = 1.4€/I

BEV Energy consumption = 15 kWh/100km Battery capacity = 20 kWh Total mileage = 120,000 km Electric energy costs = 0.12€/kWh

Energy specific Li-ion battery costs: •Year 2008 → 750 €/kWh •Year 2020 → 500/350/250 in €/kWh (Market potential low/base/high respectively) •BEV w/o subsidization & consideration of tax

→ Battery costs are expected to decrease by about 50% by 2020.

→ No cost benefit for EV till 2015 due to high battery costs.

Best Case Scenario (**BCS**): BEV and ICE costs equalize in 2014 Most Probable Scenario (**MPS**): BEV and ICE costs equalize in 2019

17

Thank you for your attention !

